

TESTING

according to the guidelines on medical management of kidney stones, including those from the American Urological Association (AUA)¹⁻³

Utilizing 24-hour urine tests to help diagnose a metabolic stone disease¹

HYPOTHETICAL PATIENT PROFILE: Susan Female | Age 12 | Asian American Height 5' 1" | Weight 42 kg | BMI 17.5 kg/m²

A young stone former with high oxalate concentration in urine

This case study is hypothetical and is not representative of all patients with PH1.

This information is provided for educational purposes only and is not intended to replace the independent medical judgment of any healthcare professional.

PATIENT TIMELINE: First 5 weeks

PRESENTING SYMPTOMS⁴

Presented to pediatrician with intermittent pain in the left flank region with occasional nausea/vomiting; without fever or chills. Referred to pediatric urologist

SCREENING EVALUATION

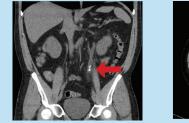
Medical history¹: No history of stone events

Family history1: No familial history of stone formation

Dietary history¹: No nutritional factors associated with a stone disease; normal fluid intake

Serum chemistry¹:

Normal kidney function


Spot urine analysis^{1,2,5,6}**:**

- Normal pH
- No hematuria
- Negative cultures

DIAGNOSTIC IMAGING

CT scan^{1,7}:

- Two left midureteral stones. Size of both stones <8 mm
- Mild bilateral nephrocalcinosis

MANAGEMENT STEPS^{1,7}

- No surgical intervention planned due to stone size
- Urologist recommends increasing water intake

STONE PASSAGE

- Dumbbell-shaped oxalate crystals
- One stone was collected for analysis
- Follow-up with urologist planned

CT= computed tomography All CT scan images provided by Dr. David Schulsinger

3 weeks after the stone passage

FOLLOW-UP EVALUATION⁸

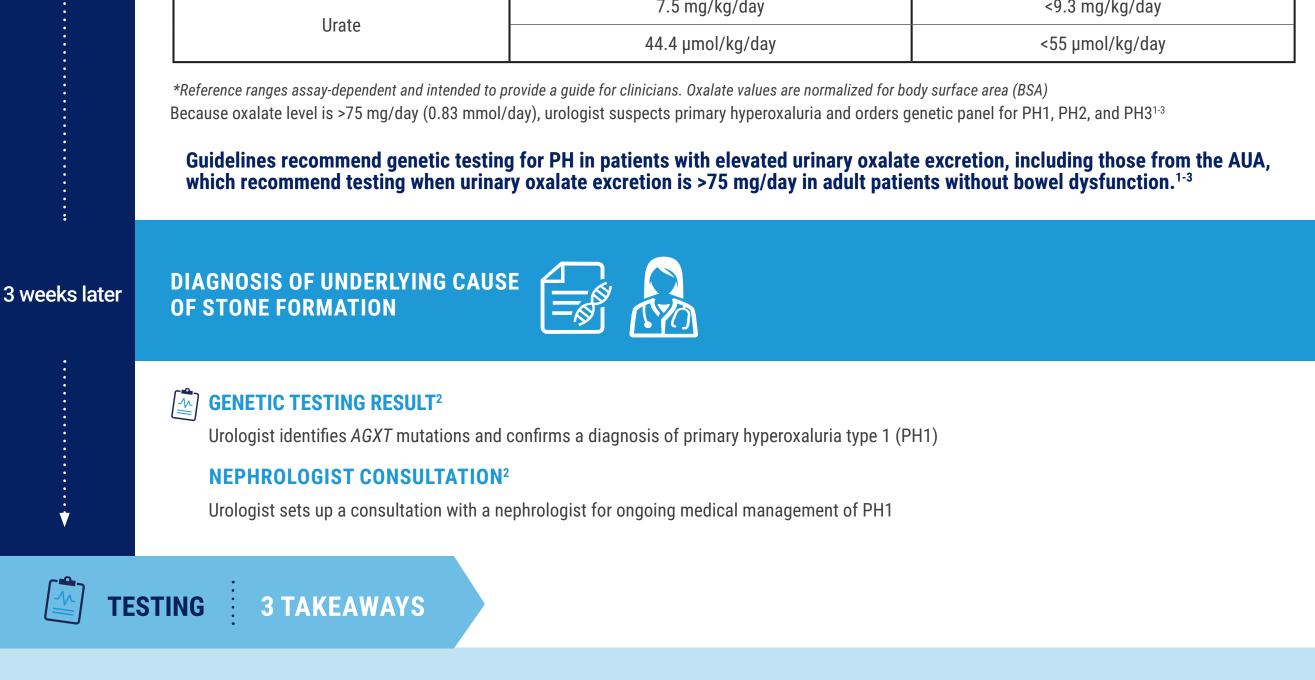
Similar results in follow-up serum chemistry and spot urine analyses

STONE ANALYSIS⁹

Stone composition: Calcium oxalate monohydrate (70%) and dihydrate (30%) mix

DIAGNOSTIC STEPS^{1,10,11}

Urologist instructed the patient's caregiver to collect 2 consecutive 24-hour urine samples in the next week while staying on a self-determined diet under normal daily conditions


2 weeks later

24-HOUR URINE TEST RESULTS

- Results of Sample 1¹²:
- Creatinine level: 17 mg/kg/24 h, indicating overcollection
- Results of Sample 2¹²:
- Creatinine level: 12 mg/kg/24 h, indicating proper collection

ANALYTE	PATIENT VALUE	REFERENCE RANGE*
Volume	2.6 L/day	>20 mL/kg/day
Calcium	2.9 mg/day	<4 mg/kg/day
	0.073 mmol/day	<0.1 mmol/kg/day
Oxalate	85 mg/1.73m²/24 h	<45 mg/1.73m²/24 h
	0.94 mmol/1.73m²/24 h	<0.5 mmol/1.73m²/24 h
Citrate	420 mg/1.73 m²/day	>310 mg/1.73 m²/day
	2.2 mmol/1.73 m²/day	>1.6 mmol/1.73 m²/day
	7.5 mg/kg/day	<9.3 mg/kg/day

- Performing proper collection of 24-hour urine samples is critical to accurate interpretation of metabolic workup results¹³
- Assessing metabolic workup results may help indicate an inherited stone disease, and prompt genetic testing can help confirm PH per guidelines, including AUA¹⁻³
- Any kidney stone in a child or adolescent merits further investigation to seek an underlying genetic cause¹⁴

ACTIONS THAT MAY IMPACT THE DIAGNOSTIC JOURNEY OF A STONE FORMER

of high-risk factors

according to the guidelines on medical management of kidney stones, including those from the American

CONSULTING

24-hour urine testing in high-risk, recurrent, and interested first-time stone formers, as recommended by guidelines, including those from the AUA, can help identify metabolic stone disease.¹ Consider ordering or referring your patients for genetic testing when you suspect an inherited stone disease such as PH1.^{3,15}

Urological Association (AUA)

ONE OPTION FOR TESTING WHEN YOU SUSPECT PH1 IS THE ALNYLAM ACT[®] PROGRAM:

Third-party genetic screening and counseling for patients who may have PH1 at no charge to patients.

The Alnylam Act[®] program was created to provide access to genetic testing and counseling to patients as a way to help people make more informed decisions about their health.

- While Alnylam provides financial support for this program, tests and services are performed by independent third parties
- Healthcare professionals must confirm that patients meet certain criteria to use the program
- Alnylam receives de-identified patient data from this program, but at no time does Alnylam receive patient-identifiable information. Alnylam may use healthcare professional contact information for research purposes
- Both genetic testing and genetic counseling are available in the US and Canada
- Healthcare professionals or patients who use this program have no obligation to recommend, purchase, order, prescribe, promote, administer, use, or support any Alnylam product.
- No patients, healthcare professionals, or payers, including government payers, are billed for this program

FOR MORE INFORMATION, VISIT ALNYLAMACT.COM AND ABOUTPH1.COM

This testing information is provided for educational purposes only and is not intended to replace the independent medical judgment of any healthcare professional.

References:

1. Pearle MS, Goldfarb DS, Assimos DG, et al. J Urol. 2014;192(2):316-324. 2. Cochat P, Hulton SA, Acquaviva C, et al. Nephrol Dial Transplant. 2012;27(5):1729-1736. 3. Hoppe B. Nat Rev Nephrol. 2012;8(8):467-475. 4. Brisbane W, Bailey MR, Sorensen MD. Nat Rev Urol. 2016;13(11):654-662. 5. Williams JC Jr, Gambaro G, Rodgers A, et al. Urolithiasis. 2021;49(1):1-16. 6. Edvardsson VO, Goldfarb DS, Lieske JC, et al. Pediatr Nephrol. 2013;28(10):1923-1942. 7. Assimos D, Krambeck A, Miller NL, et al. J Urol. 2016;196(4):1161-1169. 8. Gambaro G, Croppi E, Coe F, et al. J Nephrol. 2016;29(6):715-734. 9. Goldstein R, Goldfarb DS. Urol Nurs. 2017;37(2):81-102. 10. Ennis JL, Asplin JR. Int J Surg. 2016;36(Pt D):633-637. 11. Ellison JS, Hollingsworth JM, Langman CB. J Pediatr Urol. 2017;13(6):632.e1-321.e7. 12. Chan KH, Moser EA, Whittam BM, et al. J Pediatr Urol. 2019;15(1):74.e1-74.e7. 13. Boyd C, Wood K, Whitaker D, et al. Rev Urol. 2018;20(3):119-124. 14. Ferraro PM, D'Addessi A, Gambaro G. Nephrol Dial Transplant. 2013;28(4):811-820. 15. Cochat P, Rumsby G. N Engl J Med. 2013;369(7):649-658.

VISIT ABOUTPH1.COM

Behind The Stone and its associated logo are trademarks of Alnylam Pharmaceuticals, Inc. © 2024 Alnylam Pharmaceuticals, Inc. All rights reserved. PH1-USA-00289