

Consulting with a nephrologist when a metabolic stone disease is suspected¹

HYPOTHETICAL PATIENT PROFILE: Michael

Male | Age 28 | Hispanic American | BMI 29 kg/m²

A frequent recurrent stone former with compromised kidney function

This case study is hypothetical and is not representative of all patients with PH1.

This information is provided for educational purposes only and is not intended to replace the independent medical judgment of any healthcare professional. For U.S. HCPs only.

PATIENT TIMELINE: First Month

STONE EVENT & MANAGEMENT

PRESENTING SYMPTOMS²

Referred to urologist by PCP due to increasingly severe bouts of abdominal pain suspected to be renal colic

SCREENING EVALUATION

Medical history³: Previous stone event as a young child, resolved without intervention; no record of stone analysis

Dietary history³: Normal fluid intake **Serum chemistry**³:

Normal eGFR (CKD Stage 1)

Spot urine analysis^{3,4}:

- Normal pH
- No hematuria
- Negative cultures
- Calcium oxalate monohydrate crystals

Figure from Daudon, Clin Chem Lab Med. 2015; 53 (Suppl): S1479-S1487.5

DIAGNOSTIC IMAGING

KUB radiography^{3,6}:

• 7-mm right midureteral stone

STONE REMOVAL⁶ URS with laser lithotripsy and stone manipulation; no complications

STONE ANALYSIS⁷

Stone composition: calcium oxalate, >95% monohydrate form

DIAGNOSTIC STEPS⁸ Follow-up imaging planned in 3 months

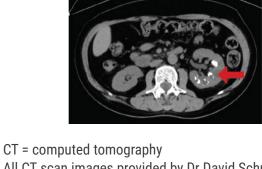
UROLOGIST CONSULTS WITH NEPHROLOGIST¹

 Reduced eGFR in the absence of stone-related obstruction prompts urologist to consult with a nephrologist

eGFR = estimated glomerular filtration rate; KUB = kidney, ureter, bladder; URS = ureteroscopy

CKD = chronic kidney disease

3 months later


RECURRENT STONE EVENT

UROLOGIST CT SCAN^{3,6}:

- Multiple instances of new stone
- formation in both kidneys; patient is asymptomatic Evidence of left renal nephrocalcinosis

FOLLOW-UP IMAGING WITH

All CT scan images provided by Dr David Schulsinger.

SCREENING EVALUATION SERUM CHEMISTRY³

CKD Stage 2

SPOT URINE ANALYSIS^{3,4}:

Normal except for oxalate/creatinine ratio of 1.1 mmol/mmol (0.875 mg/mg)

NEPHROLOGIST¹ Urologist informs nephrologist of continually

UROLOGIST CONSULTS WITH

decreasing eGFR

2 weeks later

STONE MANAGEMENT

24-HOUR URINE TEST³

UROLOGIST CONSULTS WITH NEPHROLOGIST Metabolic workup with nephrologist delayed due to recurrent stone event

3 months later

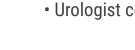
DIAGNOSIS OF UNDERLYING CAUSE OF STONE FORMATION

Nephrologist orders and reviews the 24-hour urine test results

REFERENCE RANGE*

Volume	2.9 L/day	0.5-4L/day
Oxalate	153 mg/day (1.7 mmol/day)	20-40 mg/day (0.22-0.44 mmol/day)
Calcium	148 mg/day (3.7 mmol/day)	male <250 mg/day (<6.25 mmol/day), female <200 mg/day (<5 mmol/day)
*Reference ranges assay-dependent and intended to provide a guide for clinicians		

Nephrologist suspects underlying metabolic stone disease and orders genetic testing³


GENETIC TESTING⁹ Genetic testing identifies AGXT mutations and helps confirm a diagnosis of primary hyperoxaluria type 1 (PH1)

Ongoing

UROLOGIST-NEPHROLOGIST CO-MANAGEMENT

Nephrologist medically manages the patient Urologist continues to be involved in patient care and provides procedural intervention as needed

genetic condition¹

CONSULTING

• Consulting with a nephrologist when treating patients who are stone formers or who are at risk for CKD/ESKD can help diagnose an underlying

3 KEY TAKEAWAYS

- Ordering a full metabolic workup can be warranted in higher-risk patients with early kidney stone onset and nephrocalcinosis³
- Collaborating with a nephrologist can help ensure appropriate metabolic workup following stone resolution, and may provide support for ongoing management¹
- ACTIONS THAT MAY IMPACT THE DIAGNOSTIC JOURNEY OF A STONE FORMER

CKD = chronic kidney disease ESKD = end-stage kidney disease

DENTIFICATION TESTING

of high-risk factors

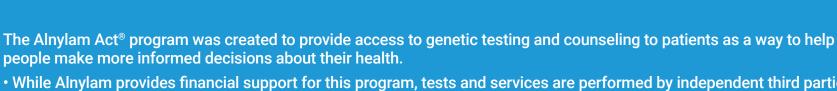
according to the guidelines on medical management

CONSULTING

ONE OPTION FOR TESTING WHEN YOU SUSPECT PH1 IS THE ALNYLAM ACT® PROGRAM: Alnylam Act 🔀

guidelines, including those from the AUA, can help identify metabolic stone disease. Consider ordering or referring your patients for genetic testing when you suspect an inherited stone disease such as PH1.10,11

References:


who may have PH1 at no charge to patients.

Both genetic testing and genetic counseling are available in the US and Canada

Behind The Stone, Alnylam Act, and their associated logos are trademarks of Alnylam Pharmaceuticals, Inc.

© 2025 Alnylam Pharmaceuticals, Inc. All rights reserved. PH1-USA-00331

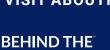
Third-party genetic screening and counseling for patients

people make more informed decisions about their health. • While Alnylam provides financial support for this program, tests and services are performed by independent third parties • Healthcare professionals must confirm that patients meet certain criteria to use the program

 Alnylam receives de-identified patient data from this program, but at no time does Alnylam receive patient-identifiable information. Alnylam may use healthcare professional contact information for research purposes

• Healthcare professionals or patients who use this program have no obligation to recommend, purchase, order, prescribe, promote, administer, use, or support any Alnylam product

FOR MORE INFORMATION, VISIT ALNYLAMACT.COM AND ABOUTPH1.COM


This testing information is provided for educational purposes only and is not intended to replace the independent medical judgment of any healthcare professional.

No patients, healthcare professionals, or payers, including government payers, are billed for this program

et al. J Urol. 2014;192(2):316-324. 4. Williams JC Jr, Gambaro G, Rodgers A, et al. Urolithiasis. 2021;49(1):1-16. 5. Daudon M, Frochot V. Clin Chem Lab Med. 2015;53 (suppl 2):s1479-s1487. 6. Assimos D, Krambeck A, Miller NL, et al. J Urol. 2016;196(4):1161-1169. 7. Goldstein R, Goldfarb DS. Urol Nurs. 2017;37(2):81-102. 8. Khan SR, Pearle MS, Robertson WG, et al. Nat Rev Dis Primers. 2016;2:16008. 9. Cochat P, Hulton SA, Acquaviva C, et al. Nephrol Dial Transplant. 2012;27(5):1729-1736. 10. Cochat P, Rumsby G. N Engl J Med. 2013;369(7):649-658. 11. Hoppe B. Nat Rev Nephrol. 2012;8(8):467-475.

1. Gambaro G, Croppi E, Coe F, et al. J Nephrol. 2016;29(6):715-734. 2. Brisbane W, Bailey MR, Sorensen MD. Nat Rev Urol. 2016;13(11):654-662. 3. Pearle MS, Goldfarb DS, Assimos DG,

